Multi-font/size Kannada Vowels and Numerals Recognition Based on Modified Invariant Moments
نویسندگان
چکیده
In this paper, an attempt is made to develop an algorithm for recognition of machine printed isolated Kannada vowels and numerals of different font size and style using modified invariant moments and that are invariant with respect to rotation, scale and translation. A minimum distance nearest neighbor classifier is adopted for classification. The proposed algorithm is experimented on 1800 images of vowels and 1000 images of numerals. The experimental results confirm the recognition accuracy as of 97.7% for vowels and 98.92% for numerals. The algorithm is simple, robust and invariant with respect to rotation, scale and
منابع مشابه
Spatial Features for Multi-Font/Multi-Size Kannada Numerals and Vowels Recognition
This paper presents multi-font/multi-size Kannada numerals and vowels recognition based on spatial features. Directional spatial features viz stroke density, stroke length and the number of stokes in an image are employed as potential features to characterize the printed Kannada numerals and vowels. Based on these features 1100 numerals and 1400 vowels are classified with Multi-class Support Ve...
متن کاملA Single Euler Number Feature for Multi-font Multi-size Kannada Numeral Recognition
In this paper a novel approach is proposed based on single Euler number feature which is free from thinning and size normalization for multi-font and multi-size Kannada numeral recognition system. A nearest neighbor classification is used for classification of Kannada numerals by considering the Euclidian distance. A total 1500 numeral images with different font sizes between (10..84) are teste...
متن کاملMulti-font Multi-size Kannada Numeral Recognition Based on Structural Features
In this paper a fast and novel method is proposed for multi-font multi-size Kannada numeral recognition which is thinning free and without size normalization approach. The different structural feature are used for numeral recognition namely, directional density of pixels in four directions, water reservoirs, maximum profile distances, and fill hole density are used for the recognition of Kannad...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملOffline Handwritten Kannada Numerals Recognition
Handwritten Character Recognition (HCR) is one of the essential aspect in academic and production fields. The recognition system can be either online or offline. There is a large scope for character recognition on hand written papers. India is a multilingual and multi script country, where eighteen official scripts are accepted and have over hundred regional languages. Recognition of unconstrai...
متن کامل